Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor

نویسندگان

  • Marie-Louise Smith
  • Mary E. Martin
  • Lucie Plourde
  • Scott V. Ollinger
چکیده

Field studies among diverse biomes demonstrate that mass-based nitrogen concentration at leaf and canopy scales is strongly related to carbon uptake and cycling. Combined field and airborne imaging spectrometry studies demonstrate the capacity for accurate empirical estimation of forest canopy N concentration and other biochemical constituents at scales from forest stands to small landscapes. In this paper, we report on the utility of the first space-based imaging spectrometer, Hyperion, for estimation of temperate forest canopy N concentration as compared to that achieved with the airborne high-altitude imaging spectrometer, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Overall accuracy of Hyperion estimates of forest canopy N concentration, as compared with field measurements, were within 0.25% dry mass, and AVIRIS-based estimates were within 0.19% dry mass, each well within the accuracy required to distinguish among forested ecosystems in nitrogen status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS

Earth Observing 1 (EO-1) Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery were used to predict canopy nitrogen (N) concentration for mixed oak forests of Green Ridge State Forest in Maryland. Nitrogen concentration was estimated for 27 ground plots using leaf samples of the dominant tree species from each plot that were dried, ground and analyzed in the laboratory fo...

متن کامل

Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping

Airborne hyperspectral data have been available to researchers since the early 1980s and their use for geologic applications is well documented. The launch of the National Aeronautics and Space Administration Earth Observing 1 Hyperion sensor in November 2000 marked the establishment of a test bed for spaceborne hyperspectral capabilities. Hyperion covers the 0.4–2.5m range with 242 spectral ba...

متن کامل

High density biomass estimation: Testing the utility of Vegetation Indices and the Random Forest Regression algorithm

Accurate estimates of wetland above ground biomass (AGB) have increasingly been identified as a critical component for an efficient wetland monitoring and management system. Multispectral remote sensing based indices have proven inadequate in estimating biomass especially at high canopy density. In this study we investigated the use of vegetation indices derived from field hyperspectral data to...

متن کامل

A Maximum Noise Fraction Transform Based on a Sensor Noise Model for Hyperspectral Data

The maximum noise fraction (MNF) transform, which produces the improved order of components by signal to noise ratio (SNR), has been commonly used for spectral feature extraction from hyperspectral remote sensing data before image classification. When hyperspectral data contains a spectral distortion, also known as a “smile” property, the first component of the MNF, which should have high image...

متن کامل

Prediction of Macronutrients at the Canopy Level Using Spaceborne Imaging Spectroscopy and LiDAR Data in a Mixedwood Boreal Forest

Information on foliar macronutrients is required in order to understand plant physiological and ecosystem processes such as photosynthesis, nutrient cycling, respiration and cell wall formation. The ability to measure, model and map foliar macronutrients (nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)) at the forest canopy level provides information on the spatial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003